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Abstract— Room reconstruction task is very impor-
tant for robot motion planning and navigation. Existing
indoor dense mapping algorithms are inefficient in
cluttered and occlusion environments because the re-
constructed building environment consists of unmean-
ingful plane fragments. In this paper, we present an ar-
chitecture for online, incremental room reconstruction
which combines an accurate RGB-D SLAM and room
layout understanding. We proposed an efficient scene
understanding method, which detects room’s corners
to infer the wireframes and layout planes of room
from single RGB-D image, even if the parts of the
room are occluded. Moreover, the 3D global features
(wireframes and layout planes of the building) can also
improve the accuracy of state estimation, especially
in geometric indoor environments. These 3D global
features are treated as global consistent landmarks, it
efficiently bounds the trajectory drift with the travel
length increasing. On a public ICL-NUIM dataset, our
algorithm achieves higher accuracy than other state-
of-arts, and it also builds a geometrically meaningful
map.

I. INTRODUCTION

In robotics, simultaneous localization and mapping
(SLAM) is an effiecient way to map an unknown
environment while estimating a robots pose within
it. Reliable autonomous navigation requires accurate
knowledge of the robots pose and the surrounding en-
vironment. Traditional approaches of SLAM rely on
low-level and local geometric features such as points
[1], lines [2], and surface patches [3] to reconstruct
the metric 3-D structure of a scene. The complex in-
door scenarios present significant challenges to these
local-feature based approaches: the cluttered building
leads the appearance-based visual features hard to be
tracked by multi-view, it significantly degenerates the
SLAM system based on graph optimization method
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Fig. 1: Example result of geometric SLAM map with
wireframes and layout planes of building.

[4]. Recently, [5] and [6] proposed high-level geo-
metric features (cuboid, quadratic) to recognize the
objects. The recognized object also benefits the state
estimation to achieve a more robust and accurate state
estimation. However, it is not enough for the robot to
perform navigation tasks.

On the other hand, scene understanding methods
can provide more geometrically meaningful features
for room reconstruction. In [7] the room layout is
parameterized as 3D box, it then samples rays from
vanishing points and using surface labels to refine
the hypothesized room model. The most closest work
to ours is [8], the author represented the room as a
set of corners of building, and select the best subset
corners by the orientation map. However, most of
these methods cannot achieve real-time performance.
There are many works [9], [10] which combined the
scene understanding methods with state estimation.



They have demonstrated that parsing scene can signif-
icantly benefit the 3D reconstruction tasks. Moreover,
the scene understanding methods seem capable of
effortlessly generating more geometrically meaning-
ful map among such structural environments by ex-
ploiting larger-scale (global or semi-global) structural
features ( such as the wireframe of the building and
the large layout planes).

The goal of this paper is to take the advantage of
scene understanding to improve the SLAM system
in both state estimation and geometric mapping. We
propose an effective scene understanding method,
which samples a set of orthonormal corners where
line segments intersect from a single RGB image
and utilizes the depth map to select the best subset
corners. According to the Manhattan assumption, we
also infer the 3D wireframes and layout planes of
buildings as global features for further uses in SLAM
system. These global features provide additional geo-
metric constraints to improve camera pose estimation
as well as the geometrically meaningful 3D map. Our
work makes the following contributions to the state
of the art:
• We propose an efficient scene understanding

method to detect wireframes and layout planes
of building from RGB-D image, even if there
are occlusions in the scene.

• We treat the wireframes and layout planes as
global features and integrate them with points-
based SLAM to improve the accuracy and ro-
bustness.

• A geometrically more meaningful map can be
obtained from the proposed method.

In the following section II, we describe the single
RGB-D image scene understanding, which provides
line of wireframe and supposed plane measurements
for SLAM. In Section III, we introduce the formu-
lation of RGB-D SLAM with multi-feature measure-
ments. Experiments on a public ICL-NUIM dataset
is presented in Section IV. Finally, we conclude in
Section V.

II. SINGLE RGB-D IMAGE SCENE

UNDERSTANDING

In indoor environments, most man-made structures
have regular shapes, especially those containing lines,
corners, and large planes. Building models can be
generated by connecting line segments to create cor-
ners, and linking corners to create wireframes and
layout planes. This section shows that we represent
the building room as a set of geometric wireframe

lines and layout planes. The goal is to infer the
3D positions of wireframe lines and planes from 2D
images for further SLAM uses.

The process of the single image scene understand-
ing can be summarized into three steps: 1). generating
a set of building’s corners from clustered line seg-
ments; 2). selecting the best subset of them according
to the depth map; 3). the potential layout planes
can be inferred through the corner characteristic. The
details will be described in the following section.

A. Corner Proposal
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Fig. 2: Four types of corners of ordinary buildings. 1:
Top left corner; 2: Top right Corner; 3: Bottom left
corner; 4: Bottom right corner.
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Fig. 3: Generating corner hypotheses.

Following [8], a room normally consists of four
types corner, as shown in Fig. 2 The process of
generating hypotheses is illustrated in Fig.3. We start
by detecting line segments [11] and cluster them
by three vanish points [12] (Fig. 3b). Then we use
RANSAC to sample the clustered lines to form cor-
ners, as shown in Fig. 3c. A corner consists of three
orthonormal lines, we only need two of them to define
a corner. Different from the method in [8], in which



sample of all possible corners are taken randomly.
Instead, we primarily sample more stable top corners
(1 and 2 types), where there are few occlusions.
Based on the top corners, we can easily infer the
corresponding bottom corners (3 and 4 types) (Fig.
3d).

B. Proposal Evaluation With Depth Map
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Fig. 4: The best corners selected with depth map.

After sampling many corner candidates, we use
depth map to cross-validate these candidates and
select the best subset, as shown in Fig. 4a. There are
several non real-time evaluation functions that have
been proposed, such as ground boundary detection
[13], surface labels [7], and orientation map [8]. We
propose a more efficient evaluation method, which
utilizes the depth map to fast filter out the sampled
lines with small curvature. It means that the corners
only can be formed by the lines of wireframe, which
are the intersection lines between two orthonormal
wall planes, as shown in Fig .4b.

C. Infer 3D Dense Layout Planes

(a) Labeling map (b) 3D Layout Planes

Fig. 5: Infer 3D layout plane.

In indoor environments, most man-made struc-
tures have regular shapes, especially those have large
enough plane features. Due to the limitation of depth
detection from low cost sensors like RGB-D cam-
eras, we can infer potential 3D layout planes by
the information of extracted wireframe. Firstly, based
on the Manhattan-assumption and selected corners,

we can generate the labeling map of layout planes
in 2D, as shown in Fig. 5a. Then, we reversely
project the top corners (1 and 2 types) as top 3D
wireframe junctions, and we also use the co-planar
knowledge between the 3D wireframe junctions and
layout planes to infer the parameters of planes. Due
to always existing occlusions at the bottom, the depth
information of bottom 3D wireframe junctions should
be supposed by back-projection the corner’s pixel
onto the 3D inferred layout planes:

P =
−d

nT (K−1 p)
K−1 p (1)

where the inferred layout plane can be represented
as π = (n,d) ∈R4, and n ∈R3 and d are the normal
vector and distance to origin respectively. K is the
camera’s calibration matrix, p and P are the pixel
and 3D position respectively. Finally, we use the la-
beled pixels to back-projection them to corresponding
planes and it generates a 3D dense layout planes, as
shown in Fig. 5b.

III. RGB-D SLAM WITH SCENE

UNDERSTANDING CONSTRAINTS

This section introduces the RGB-D SLAM using
wireframes and layout planes to achieve globally
accurate state estimation.

A. Fundamentals
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Fig. 6: Factor Graph

The factor graph of SLAM is shown in Figure 6.
The circles and recetangles mean the nodes and edges
in factor graph. As the afrontmention, the L lines of
wireframe and the layout plane landmarks are ob-
served by more camera node Ci. The representation of
cost function for the tightly-coupled RGB-D SLAM
with heterogeneous geometric features (points, lines,



planes) is defined as following:

x∗i = argmin
(
∑
pk

∥∥Ep (k)
∥∥

Σp
+∑

lk

‖El (k)‖Σl

+∑
πk

‖Eπ (k)‖Σπ

) (2)

where Ep, El , Eπ errors represent for camera w.r.t.
visual point, camera w.r.t. line, and camera w.r.t.
plane features respectively. Σp, Σl , and Σπ are the
corresponding information matrix of different error
measurements. The detailed definitions of variables
and errors terms are in the following section.

B. Geometric information: Point, Line, and Plane

From each frame image, we utilize geometric
point, line, and plane measurements to tackle traking
problem.

1) Point measurement: The point reprojection er-
ror constrains the minimum geometric error between
a projected mappoint and a corresponding measured
keypoint. Consider the kth feature that is observed in
the ith image, the residual is defined as:

∥∥Ep(k)
∥∥

Σp
=
(

xk−π

(
Pk

Ci

))T
Σp

(
xk−π

(
Pk

Ci

))
(3)

where π represents a projection function, xk is the kth
keypoint location in the image frame, Pk

Ci
is the kth

mappoint in ith camera coordinates, the information
matrix is Σp.

2) Line measurement: In our system, a 4-DoF
straight line in 3D space is treated as an infinite
line and we adopt two parameterizations for a 3D
line as in [14]. One is the Plcker line coordinates
L = (nT ,dT )T ∈ R6 used for transformation and
projection due to its geometric intuitive, where n∈R3

is the normal of the plane determined by the line’s
endpoints and the coordinate origin, and d ∈ R3 is
the line direction. Another one is the orthonormal
representation (U,W )∈R4 used for optimization and
updating due to its compactness. The reprojection
error is:

‖El (lk)‖Σl
= el (lk)

T
Σlel (lk)

el (li) =
[

d
(
slk , llk

)
d
(
elk , llk

) ] , d(s,1) =
s>l√
l2
1 + l2

2

(4)

where slk and elk are the endpoints of kth lines,
respectively. llk is the re-projection of lines on the
image plane.

3) Plane measurement: We construct a global
map that consists of plane features in the scenes. A 3-
DoF plane is represented as an infinite plane. Similar
with line, the over-parametrized homogeneous repre-
sentation is π = (nT ,d)T ∈R4 for transformation and
projection, where n ∈ R3 is the normal vector of the
plane, and d is the nearest distance between plane and
origin. We also utilize the spherical coordinate plane
representation as in [14] (cosφcosθ ,cosφsinθ ,d) ∈
R3 to do plane updates during optimization, where
φ and θ are the azimuth and elevation angles of the
plane normal n ∈ R3 respectively. The reprojection
error is:

‖Eπ (k)‖= eπ (k)
T

Σπeπ (k)

eπ (k) = π
k
c −T−>cw π

k
w

(5)

where πk
w is the kth plane parameter in the world

coordinate system and πk
c is the corresponding plane

observation in the camera coordinate system.

C. Data Association

The point association is intuitive because the point
can be matched with their descriptor as used in [1].
Similar with point association, line also has LBD
descriptor for matching [2]. For plane association,
we use the following three geometry information
for plane matching: the difference between plane
normals, plane distance to each other, and projection
overlapping between planes. Then the best match is
selected based on a weighted sum of them.

IV. EXPERIMENTS

A. Implementation details

We implemented our SLAM based on the feature
point based ORB SLAM2 [1], augmented with our
wireframes and layout planes. The graph optimization
is impleted in g2o with L-M non-linear algorithm
[15]. The whole system pipline as shown in Fig 7. For
the final dense map generation, we reversely project
pixels in the labeled image regions onto the layout
plane landmarks.

B. Single Image Scene Understanding Result

We first show the single image scene understanding
results. Some examples of building reconstruction
are shown in Fig. 8. We can see that the scene
understanding can obtain more geometric information
of room compared with traditional RANSAC-based
plane feature extration method [16]. Although the
background wall has occlusion, our method can still
provide a complete geometric point cloud of walls.
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Fig. 7: System overview.

Fig. 8: Single image results. First column represents
labelled map; Second column represents 3D layout
planes; Third column is the plane detected by trandi-
tional RANSAC extration.

C. SLAM Result

We then evaluate the our SLAM tracking and
mapping performance on public datasets ICL-NUIM
[17].

Methods ORBSLAM2 Structure SLAM Ours
ICL living kt1 0.034 0.013 0.012
ICL living kt2 0.017 0.019 0.012
ICL office kt2 0.041 0.027 0.024
ICL office kt3 0.099 0.038 0.013

TABLE I: Absolute Trajectory Error (ATE) [m] in
ICL-NUIM Datasets

1) Quantitative Result: In this experiment, we
mainly evaluate the quantitative result of SLAM
system. We show the trajectory accuracy of camera
pose comparison with ORB SLAM2 [1] and Structure
SLAM [18], shown in Fig. 9. The figure illustrates

(a) ORBSLAM2

(b) Structure SLAM

(c) Ours

Fig. 9: The trajectory results on ICL-NUIM Office
kt3 dataset. The left column shows the estimated
trajectory against with the ground truth. The right
column shows the Absolute Trajectory Error (ATE).

that our augmented SLAM system can efficiently
bound the drift with the travel length increasing. More
comparison results are summarized in Table. I, we can
see that in most of the scenarios, the augmented line
and plane landmark constraints in the SLAM system
(Structure SLAM [18] and ours) improve the camera
pose estimation. The reason is that the line and



plane features can provide more rotation constraints
to reduce the drift [19]. In addition, our SLAM
system has lower drift than Structure SLAM [18], due
to global feature constraints (wireframes and layout
planes of building). The global features have long-
range visibility properties, our SLAM system can
associate more frames with the wireframe and layout
plane landmarks to reduce the final drift.

Fig. 10: The room reconstruction result on ICl-NUIM
office room.

Length Width Height
Estimated 4.958 4.928 2.528

Living Room Ground Truth 4.980 4.940 2.500
Error 0.022 0.012 0.028

Estimated 7.414 5.051 2.402
Office Room Ground Truth 7.400 5.000 2.400

Error 0.014 0.051 0.002

TABLE II: The room reconstruction error [m].

2) Quality Result: In this experiment, we mainly
evaluate the 3D mapping accuracy by comparing our
estimated 3D building model with the ground truth.
We evaluate the estimated living room model (Fig.
1) and office room (Fig. 10). The numerical results
are shown in Table 2. Although the estimated room’s
scale has around 2 cm error, the map with wireframe
and layout planes can provide enough geometric
information for robot navigation.

V. CONCLUSIONS

In this paper, we have presented a low-drift RGB-
D SLAM system augmented by efficient scene un-
derstanding method. For cluttered scenarios involving
occlusions, we propose a fast scene understanding
method to detect wireframe and layout planes of
buildings. The wireframe and layout planes also are
treated as global features to integrate into the point
feature based SLAM system for accuracy and robust-
ness. Compared to low-level features based SLAM,

our SLAM system can build a more geometrically
meaningful map for robot navigation.

In the future, we will take more general corner
types (e.g, Convex corner, occlusion corner, and cor-
ridor turning corner) into account to produce a more
complete geometric map.
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